

# Glycogen Branching Enzyme Assay Kit

## Product Information

**Cat.No.** Kit-3430

### Product Overview

The Glycogen Branching Enzyme Assay Kit is used for determining Glycogen Branching Enzyme activity in various samples. Glycogen branching enzyme activity is determined by iodine assay. And it can be measured at 660 nm. The Glycogen Branching Enzyme activity in the sample is then determined by comparing the O.D. of samples to the standard.

### Storage

2-8°C

### Kit Components

Microplate, 1 X 96-well plate, 4°C

Standard (5 µmol), 1 vial (Lyophilized), 4°C

Assay Buffer, 4 X 30 ml (ready to use), 4°C

Reaction Buffer 1, 6 ml (ready to use), 4°C

Reaction Buffer 2, 8 ml (ready to use), 4°C

Substrate, 1 vial (Lyophilized), 4°C

Reaction Dye, 1 ml (ready to use), 4°C

### Materials Required but Not Supplied

Microplate reader capable of measuring absorbance at 660 nm

Pipettes and pipette tips

Deionized or distilled water

Convection oven (37°C)

### Technical Notes

Wear protective gloves, clothing, eye, and face protection especially while handling blood or body fluid samples.

Store the kit at 4°C at all times.

Reaction Dye should be store at 4°C and protect from light.

## Glycogen Branching Enzyme Assay Kit

Briefly spin down the reagents before use.

It is highly recommended that the standards and samples be assayed in at least duplicates.

Change pipette tips between the addition of different reagent or samples

---

### Preparation

Sample Preparation (for liquid samples):

Add 0.1 ml of liquid samples into 0.9 ml of Assay buffer in a microcentrifuge tube, mix well.

Centrifuge the tube 10000 X g at 4 °C for 10 minutes, collect the supernatant into a new tube and keep it on ice before assay. Undiluted samples can be aliquoted and stored at -20°C or below for up to 1 month. Avoid repeated freeze-thaw cycles.

Tissue lysate- Weigh out 0.1 g of tissue, homogenize with 1 ml Assay buffer on ice. Centrifuge samples 10000 X g at 4 °C for 10 minutes. Collect the supernatant into a new tube and keep it on ice before assay. Assay immediately or aliquot and store samples at -20°C or below for up to 1 month. Avoid repeated freeze-thaw cycles.

#### REAGENT PREPARATION □

Substrate: Reconstitute the Substrate with 1 ml of distilled water. Allow the Substrate to heat for 1 minute at boiling water bath or heat plate. Make sure the Substrate is dissolved completely before use. The reconstituted Substrate can be stored at 4°C for up to 1 week. □

Standard: Reconstitute the Standard with 1 ml of distilled water to yield a stock concentration of 5 µmol/ml (5 mmol/L). Allow the Standard to sit for few minutes with gentle agitation to make sure the Standard is dissolved completely before use. The reconstituted standard stock can be aliquoted and stored at -20°C for up to 1 month. Dilute 400 µl of the reconstituted Standard stock with 600 µl distilled water before use. The concentration of the working standard solution will be 2 µmol/ml (2 mmol/L).

---

### Assay Protocol

All materials should be equilibrated to room temperature (RT) before use. Standards and samples should be assayed in at least duplicates.

1. Add 40 µl per (diluted) samples into each microcentrifuge tube.
2. Add 40 µl of distilled water into control tube.
3. Add 10 µl of distilled water into standard tube.

## Glycogen Branching Enzyme Assay Kit

4. Add 50  $\mu$ l of distilled water into blank tube.
5. Add 60  $\mu$ l of Reaction Buffer 1 per tube into each Sample, Control, Standard and Blank tube.
6. Add 10  $\mu$ l of reconstituted Substrate into each Sample and Control tube.
7. Mix well and closed lid of the tube with cap lock. Incubate all tubes at 37°C for 20 min.
8. Then incubate all tubes at boiling water bath for 1 min.
9. Transfer all reagent into the microplate.
10. Add 80  $\mu$ l of Reaction Buffer 2 per well into each Sample, Control, Standard and Blank tube.
11. Add 40  $\mu$ l of Standard into standard well.
12. Add 10  $\mu$ l of Reaction Dye per well into all wells.
13. Gently tap the plate to ensure thorough mixing.
14. Incubate the plate at RT for 10 min.
15. Read the OD with a microplate reader at 660 nm immediately.

### Summary of Glycogen Branching Enzyme Assay Procedure

Reagent Sample Control Standard Blank

Sample 40  $\mu$ l - - -

Distilled water - 40  $\mu$ l 10  $\mu$ l 50  $\mu$ l

Reaction Buffer 1 60  $\mu$ l 60  $\mu$ l 60  $\mu$ l 60  $\mu$ l

Substrate 10  $\mu$ l 10  $\mu$ l - -

Mix well and incubate all tubes at 37°C for 20 min.

Incubate all tubes at boiling water bath for 1 min

Reaction Buffer 2 50  $\mu$ l 50  $\mu$ l 50  $\mu$ l 50  $\mu$ l

Standard - - 40  $\mu$ l -

Reaction Dye 10  $\mu$ l 10  $\mu$ l 10  $\mu$ l 10  $\mu$ l

Mix thoroughly, incubate the tubes at RT for 10 min.

Read the OD with a microplate reader at 660 nm immediately.

### Analysis

1. Unit Definition: One unit of Glycogen Branching Enzyme activity is defined as the enzyme decompose 1  $\mu$ mol soluble starch per minute.
2. Calculate the average absorbance values for each set of samples, standards, controls and blank.

## Glycogen Branching Enzyme Assay Kit

### 3. Calculation:

#### A. Definition:

CProtein: the protein concentration, mg/ml;

CStandard: the standard concentration, 2  $\mu$ mol/ml;

W: the weight of sample, g;

VStandard: the volume of the standard, 40  $\mu$ l = 0.04 ml;

VSample: the volume of reaction sample, 40  $\mu$ l = 0.04 ml;

Vtotal: the total volume of sample in Assay buffer, 1 ml;

N: sample dilution factor = 10;

T: the reaction time, 20 minutes.

#### B. Formula: a). According to the protein concentration of sample

Glycogen Branching Enzyme activity (U/mg) =  $[(C_{\text{Standard}} \times V_{\text{Standard}}) \times (OD_{\text{Control}} - OD_{\text{Sample}})] / [(OD_{\text{Standard}} - OD_{\text{Blank}}) \times (V_{\text{Sample}} \times C_{\text{Protein}}) \times T] = 0.1 \times (OD_{\text{Control}} - OD_{\text{Sample}}) / [(OD_{\text{Standard}} - OD_{\text{Blank}}) \times C_{\text{Protein}}]$

#### b). According to the weight of sample

Glycogen Branching Enzyme activity (U/g) =  $[(C_{\text{Standard}} \times V_{\text{Standard}}) \times (OD_{\text{Control}} - OD_{\text{Sample}})] / [(OD_{\text{Standard}} - OD_{\text{Blank}}) \times (W \times V_{\text{Sample}} / V_{\text{total}}) \times T] = 0.1 \times (OD_{\text{Control}} - OD_{\text{Sample}}) / [(OD_{\text{Standard}} - OD_{\text{Blank}}) \times W]$

#### c). According to the volume of sample

Glycogen Branching Enzyme activity (U/ml) =  $N \times [(C_{\text{Standard}} \times V_{\text{Standard}}) \times (OD_{\text{Control}} - OD_{\text{Sample}})] / [(OD_{\text{Standard}} - OD_{\text{Blank}}) \times V_{\text{Sample}} \times T] = 10 \times 0.08 \times (OD_{\text{Sample}} - OD_{\text{Blank}}) / [(OD_{\text{Standard}} - OD_{\text{Blank}}) \times 0.04 \times 20] = 1 \times (OD_{\text{Sample}} - OD_{\text{Blank}}) / (OD_{\text{Standard}} - OD_{\text{Blank}})$

### Sensitivity

The detection range is from 0.01 mmol/L - 2 mmol/L