

## Colorimetric Peroxidase Assay Kit (Blue)

### Product Information

---

**Cat**

Kit-0991

---

**Common Name**

Peroxidase

---

**Cat.No.**

Kit-0991

---

**Product Overview**

This kit uses Blue, our chromogenic HRP substrate that is much more sensitive to both H<sub>2</sub>O<sub>2</sub> and peroxidase than other chromogenic peroxidase substrates such as TMB, ABTS, OPD and K-Blue. Blue generates a highly absorptive material that has maximum absorption of 664 nm. This near infrared absorption minimizes the background absorption often caused by the auto-absorption of biological samples. The kit provides an optimized "mix and read" assay protocol that is compatible with HTS liquid handling instruments. The assay can be performed in a convenient 96-well or 384-well microtiter-plate format and easily adapted to automation without a separation step. Its signal can be easily read by an absorbance microplate reader at 664±5 nm.

---

**Description**

Horseradish Peroxidase (HRP) is a small molecule (MW ~40 KD) that is widely used in a variety of biological detections. HRP conjugates are extensively used as secondary detection reagents in ELISAs, immunohistochemical techniques; Northern, Southern and Western blot analyses. Due to its small size, it rarely causes steric hindrance problem with the antibody/antigen complex formation. It is usually conjugated to an antibody in a 4:1 ratio. Additionally, HRP is inexpensive compared to other labeling enzymes. The major disadvantage associated with peroxidase is their low tolerance to many preservatives such as sodium azide that inactivates peroxidase activity even at low concentration.

---

**Storage**

Keep in freezer and avoid exposure to light.

---

## Colorimetric Peroxidase Assay Kit (Blue)

### Size

500 assays

### Kit Components

Component A: Blue Peroxidase Substrate 1 vial  
Component B: H<sub>2</sub>O<sub>2</sub> 1 vial (3% stabilized solution, 200 μL)  
Component C: Assay Buffer 1 bottle (100 mL)  
Component D: Horseradish Peroxidase 1 vial (20 units)  
Component E: DMSO 1 vial (1 mL)

### Features & Benefits

**Broad Application:** Can be used for quantifying HRP activities in solutions and solid surfaces (e.g. ELISA).

**Sensitive:** Detect as low as 3 mU/mL HRP in solution.

**Continuous:** Easily adapted to automation without a separation step.

**Convenient:** Formulated to have minimal hands-on time. No wash is required.

**Non-Radioactive:** No special requirements for waste treatment.

### Preparation

1. Prepare stock solutions:

1.1 100X Blue peroxidase substrate stock solution: Add 250 μL of DMSO (Component E) into the vial of Blue Substrate (Component A). The stock solution should be used promptly, and any remaining solution should be aliquoted and refrozen at -20°C.

Note: Avoid repeated freeze-thaw cycles.

1.2 20 U/mL HRP stock solution: Add 1 mL of Assay Buffer (Component C) into the vial of HRP (Component D).

Note: The unused HRP solution should be divided into single use aliquots and stored at -20°C.

1.3 20 mM H<sub>2</sub>O<sub>2</sub> stock solution: Add 22.7 μL of 3% H<sub>2</sub>O<sub>2</sub> (0.88 M, Component B) into 977 μL of Assay Buffer (Component C).

Note: The diluted H<sub>2</sub>O<sub>2</sub> solution is not stable. The unused portion should be discarded.

2. Prepare HRP reaction mixture: Prepare HRP reaction mixture according to the following table and

## Colorimetric Peroxidase Assay Kit (Blue)

keep from light.

Table 1. HRP reaction mixture for one 96-well plate (2X)

Blue peroxidase substrate stock solution (100X, from Step 1.1) 50  $\mu$ L

20 mM H<sub>2</sub>O<sub>2</sub> stock solution (from Step 1.3) 50  $\mu$ L

Assay buffer (Component C) 4.9 mL

Total volume 5 mL

3. Prepare serially diluted HRP standards (0 to 300 mU/mL):

Warnings: 1. The component A is unstable in the presence of thiols such as DTT and  $\beta$ -mercaptoethanol. The presence of thiols at concentration higher than 10  $\mu$ M would significantly decrease the assay dynamic range.

2. NADH and glutathione (reduced form: GSH) may interfere with the assay.

3.1 Add 15  $\mu$ L of 20 U/mL HRP stock solution (from Step 1.2) into 985  $\mu$ L of Assay Buffer (Component C) to get 300 mU/mL HRP standard solution.

3.2 Take 200  $\mu$ L of 300 mU/mL HRP standard solution to perform 1:3 serial dilutions to get 100, 30, 10, 3, 1, 0.3 and 0 mU/mL serially diluted HRP standards.

3.3 Add HRP standards and/or HRP-containing test samples into a white wall/clear bottom 96-well microplate as described in Tables 2 and 3.

Table 2. Layout of HRP standards and test samples in a white wall/clear bottom 96-well microplate

BL BL TS TS .... ....

PS1 PS1 .... .... ....

PS2 PS2

PS3 PS3

PS4 PS4

PS5 PS5

PS6 PS6

PS7 PS7

Note: PS=Peroxidase Standards; BL=Blank Control; TS=Test Samples

Table 3. Reagent composition for each well:

HRP Standards: Serial Dilutions\*: 50  $\mu$ L

Blank Control: Assay Buffer (Component C): 50  $\mu$ L

## Colorimetric Peroxidase Assay Kit (Blue)

Test Sample: 50  $\mu$ L

\*Note: Add the serially diluted HRP standards from 0.3 mU/mL to 300 mU/mL into wells from PS1 to PS7 in duplicate.

### Assay Protocol

4. Run HRP assay in supernatants:

4.1 Add 50  $\mu$ L of HRP reaction mixture (from Step 2) into each well of HRP standard, blank control, and test samples (see Step 3.3) to make the total HRP assay volume of 100  $\mu$ L/well.

Note: For a 384-well plate, add 25  $\mu$ L of sample and 25  $\mu$ L of HRP reaction mixture into each well.

4.2 Incubate the reaction at room temperature for 30 to 60 minutes, protected from light.

4.3 Monitor the absorbance with an absorbance plate reader at 664 $\pm$ 5 nm.

### Analysis

The absorbance in blank wells (with the assay buffer only) is used as a control, and is subtracted from the values for those wells with the HRP reactions.